
www.manaraa.com

Computer Science Technical Reports Computer Science

2006

Architecting Secure Software Systems Using an
Aspect-Oriented Approach: : A Survey of Current
Research
Josh Dehlinger
Iowa State University

Nalin Subramanian
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports

Part of the Software Engineering Commons

This Article is brought to you for free and open access by the Computer Science at Iowa State University Digital Repository. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Dehlinger, Josh and Subramanian, Nalin, "Architecting Secure Software Systems Using an Aspect-Oriented Approach: : A Survey of
Current Research" (2006). Computer Science Technical Reports. 258.
http://lib.dr.iastate.edu/cs_techreports/258

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports/258?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Architecting Secure Software Systems Using an Aspect-Oriented
Approach: : A Survey of Current Research

Abstract
The importance of security in the development of complex software systems has increasingly become more
critical as software becomes increasingly more pervasive in our everyday lives. Aspect-orientation has been
proposed as a means to handle the crosscutting nature of security requirements when developing, designing
and implementing security-critical applications. This paper surveys some of the approaches and contributions
of integrating an aspect-oriented approach into designing and implementing secure software systems.

Disciplines
Software Engineering

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/cs_techreports/258

http://lib.dr.iastate.edu/cs_techreports/258?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

 1

Architecting Secure Software Systems Using an Aspect-Oriented Approach:

A Survey of Current Research

Josh Dehlinger

Computer Science Department

Iowa State University

dehlinge@ iastate.edu

Nalin Subramanian

Computer Science Department

Iowa State University and

nvsubram@ iastate.edu

Abstract
The importance of security in the development of complex

software systems has increasingly become more critical

as software becomes increasingly more pervasive in our

everyday lives. Aspect-orientation has been proposed as

a means to handle the crosscutting nature of security

requirements when developing, designing and

implementing security-critical applications. This paper

surveys some of the approaches and contributions of

integrating an aspect-oriented approach into designing

and implementing secure software systems.

Keywords: Aspect orientation, software security

requirements, security framework, software architecture,

security concerns in code, web applications, distributed

applications.

1. Introduction
The importance of security in the development of complex

software systems has increasingly become more critical as

software becomes increasingly more pervasive in our

everyday lives [4]. A wide range of security-critical

domains (e.g., finance, national defense, etc.) rely on

software applications as the major enforcement entity

ensuring the security policies of the stakeholders.

Although secure systems are critical to numerous domains,

industry experience has shown that software developers

are poor at writing secure code, often because of the

complex nature of non-functional requirements such as

security [17].

 It is well established that security requirements are

non-functional requirements that are cross-cutting in

nature [7] - they "crosscut the requirements, design or

implementation of several or even many building blocks"

[11]. This further complicates producing secure code

since the enforcement of security policies are scattered or

"tangled" throughout the design and implementation. An

important solution in managing the crosscutting nature of

security requirements is to adopt an aspect-oriented

software development (AOSD) approach in designing and

implementing the system [8]. AOSD handles crosscutting

concerns, such as security, by employing the separation of

concerns view. In terms of security, this means that the

main module(s) of a program would not need to encode

security policies; rather, security policies would be

separated and implemented in a separate, independent

piece of code [17]. Using AOSD, the separation of

concerns principle for a crosscutting concern, can be

applied from the requirements engineering phase (e.g.,

[12]) through the software lifecycle until it is (likely)

implemented as an aspect in aspect-oriented programming

(AOP), for example in AspectJ [9], in the software.

 In analyzing the deficiencies of the state of the art in

designing, developing and implementing secure systems,

Viega, Bloch and Chandra identified a number of

desirable properties in any solution hoping to improve

software engineers and developers in producing more

secure systems. The properties in [17] include:

• The security-related properties in a system should be

abstracted out of the main system to improve clarity,

maintainability, manageability and reuse.

• Legacy source code with known or potential security

vulnerabilities should be able to be patched with a

minimal amount of new code. It should also be

possible to avoid modifying the original code.

• When applicable, security-related properties should

be reusable across different applications.

AOSD and AOP proponents claim that their techniques,

frameworks and methodologies satisfy these properties

when implementing security requirements as crosscutting

concerns [17]. In addition, AOSD and AOP specifically

can aid in the following security-specific activities [17]:

• Automatically perform error checking on security-

sensitive calls.

• Automatically log data related to security concerns.

• Replace generic code with secure code (e.g., generic

socket code with SSL socket code).

• Insert code at startup that goes through a set of

"lockdown" procedures.

• Specify privileged sections a program and

automatically request and return privileges when

necessary.

www.manaraa.com

 2

 Thus, the contributions of adopting an AOSD/AOP

approach to designing and implementing the security

requirements of a security-critical software system have

led researchers to actively pursue this avenue as a viable

approach. This paper surveys some of the contributions

and their relation to designing and implementing secure

software systems. Specifically, this paper investigates

several differing aspect-oriented security frameworks

proposed in literature, identifies problems and lessons

learned from the proposed aspect-oriented security

frameworks and discusses and briefly evaluates the

AOSD-based security frameworks. The second part of

this work provides a broad review of aspect-oriented

approaches used for secure coding, modeling security

concerns and resolving security concerns in distributed

software applications.

2. Aspects in Software Security: Security

Frameworks Employing an Aspect-Oriented

Approach
This section investigates several approaches for using an

aspect-oriented framework for designing secure software

systems. We first review UML-based security framework

for incorporating security policies as an aspect when

designing a secure system. We then review a rather

formal, architecture-based, aspect-oriented security

framework that heavily uses the Software Architecture

Model (SAM), Petri nets and temporal logic for

architecting a secure software system. Third, we review a

generic aspect-oriented security framework and provide

the authors' learned lessons derived from its design and

use. It is hoped that the lessons learned contribute to the

improved design of future security frameworks. We

conclude this section with some discussion and an

informal evaluation of the AOSD-based security

frameworks.

2.1 Designing a Secure System Using Aspects
It has been well established that the manner in which

software is designed can have a significant impact on

nonfunctional qualities of the system (e.g., reliability,

usability, security, etc.). Therefore, it is crucial that

software engineers and developers consider these

nonfunctional concerns when making architectural, logical

and physical design decisions. This subsection briefly

covers an aspect-oriented design technique for designing a

secure system as proposed Georg, Ray and France in [6].

In [6], security concerns are captured in aspects and are

treated as design patterns. The authors claim that viewing

security concerns in this manner during design modeling

allows for the following advantages [6]:

• Aspects allow one to understand and communicate

security concerns in their essential forms, rather than

in terms of specific behavior.

• An aspect focuses on one concern, allowing for an

easier way to model and understand its behavior.

• Security aspects may be reusable across different

systems.

• Changes to security policies are made in one place

(the implemented security aspect) and effected by

weaving the aspects into the primary model.

• Easier to analyze the impact of security concerns on

design units by weaving the aspects into the primary

models and evaluating the resulting models.

• Security engineers and designers may be able to

identify problems with the design of the security

mechanisms even before they are implemented -

potentially saving significant development cost, time

and effort.

 This approach uses Role Models, "a structure of roles

where a (meta-)role defines properties that must be

satisfied by conforming to a UML model elements" (e.g.,

a class or an association) [6]. Then, weaving this kind of

an aspect into a primary model only involves a model

transformation process where the non-conforming model

is transformed to a conforming model (i.e., the model that

incorporates the aspect).

 A security concern as a design aspect is modeled using

two aspect views: static and interaction views. The static

view captures the structural properties of the aspect. The

interaction view captures the interaction patterns

associated with the aspect. This approach uses Static Role

Models (SRM) and Interaction Role Models (IRM) to

model these two views. An SRM defines the patterns of

UML static structural model, such as UML Class Diagram

patters, and an IRM defines UML interaction diagram

patters, such as UML Collaboration Diagram patterns.

Using this models, an aspect definition usually consists of

an SRM and one or more IRMs. A full description of

SRMs and IRMs can be found in [6] and other existing

literature.

 The authors of [6] then define security objectives

including confidentiality, integrity and availability and

provide a know list of potential security attacks, problems

and solutions. They claim weaving strategies, to

determine the constraints and the manner in which the

aspects (containing the security policies), need to be

developed from the expected security threats and

problems expected for the proposed system. For example,

if the proposed system has non-sensitive data traveling

over communication links, this indicates that encryption is

not need and can be omitted from the weaving strategies.

However, [6] provides no insight on how to choose a

strategy for different security attacks and problems and

provides no listing or evaluation of weaving strategies for

different weaving strategies. Presumably, this is at the

discretion and expertise of the security engineer. Rather,

www.manaraa.com

 3

[6] focuses on how to model security aspects using Role

Models and then how to weave the aspects into a design

model.

 To weave an aspect modeled by a combination of an

SRM and IRM(s), the following steps suffice:

1. Map primary model elements to the roles they

intend to play.

2. Merge roles with primary model elements.

3. Add new elements to the primary model.

4. Delete existing elements from the primary model.

 The authors intend that the weaving strategies become

"reusable forms of experience that can be used to assess

the threats to a particular system and propose techniques

(i.e., a combination of mechanisms) to prevent or detect

related attacks" [6]. Yet, they provide no demonstration

or hint how this can be done. Further, the authors claim

that their approach provides the ability to easily change

the weaving strategy and then re-weave them into the

model to observe the impact on the system by the

proposed changes. This could be quite powerful if a

security engineer is intuitive enough to see the advantages

and disadvantages in the application of different weaving

strategies. However, this analysis would only be as good

as the engineer.

 This approach is somewhat problematic in that the

security provided by the mechanisms in the model is only

as good as the weaving strategies. That is, a good security

policy may be implemented in the aspects, but a poor

weaving strategy of the aspect into the primary module

will yield an insecure system. Coupling this with the lack

of guidance, or even several realistic examples, provided

by the authors in selecting an appropriate weaving

strategy for a particular security attack or problem

illustrates the immaturity of this approach. Further, the

lack of tool support prevents the practical use of this

approach and an empirical evaluation using this approach

hinders its independent evaluation.

2.2 Secure Software Architectures Using

Aspect Orientation
While the security framework using aspect-orientation

described in [6] uses the UML-like models along with

Role Models to define a system and an aspect, the

approach presented in [18] relies on the more formal

methods of the Software Architecture Model (SAM), Petri

nets and temporal logic to define the system and the

security aspects. This approach uses SAM to define a

hierarchical set of compositions of the software

architecture where each composition consists of a set of

components, a set of connectors and a set of constraints to

be satisfied by the interacting components. The behavior

of the components and connectors are modeled by

predicate transition nets and the properties are specified

my temporal logic formulas. This subsection describes

the formal approach, described in [18], to design secure

software architectures. The secure architecture derived

from this approach "defines the structure of the software

system, the interaction and coordination among its

components, which correctly enforces the security

requirement" [18]. The authors claim the following

contributions of their approach:

• A formal notion for aspect-oriented modeling at an

architectural level.

• An aspect-oriented approach to designing secure

software architectures.

Figure 1. An AOSD Framework for Secure Software

Architectures

 An overview of the approach in [18] is given in Figure

1. The following provides a quick summary for each step

in the framework illustrated in Figure 1:

• The problem domain model gives a precise

description of the basic functionality and their

relationship to the proposed system.

• The base architecture model defines the software

architecture for the basic functional modules and

their connections.

• The security aspect model describes the security

requirements, defines the vulnerabilities and threats

and provides mechanisms that enforce security

policies into the software architecture.

• The secure architecture model is the software

architecture model that the security polices have

been correctly enforced.

 The base architecture model in this approach is a

SAM model with block grouping (a block is a part or

whole of a predicate transition net that models a particular

software module and is characterized by its internal

elements and its external elements). Each block

represents an autonomous software entity.

 The security aspect model describe precisely the

security relevant features of the proposed software system.

This approach uses two language constructs to specify

security aspects of software architectures. They are:

www.manaraa.com

 4

• Architecture constructs that define characteristics of

the block-based architecture and also include

attributes such as name, main task, sensitive

information, etc.

• Security constructs that specify security policies and

include LTL-like constructs for the problem domain.

Using these constructs, [18] defines how the security

aspect applies to the base architecture model by using

join points, pointcuts, and aspects. They define a pointcut

as connectors that have the same security vulnerability and

share the common security enforcement mechanism. An

advice is a pattern that “specify the security enforcement

mechanisms for pointcuts” [18]. Additionally, advice

associates fragments of predicate transition nets with

pointcuts, “which specify the system behaviors at every

join points in particular join points” [18].

 The aspect weaving step in this framework creates a

software architecture by weaving aspect models with the

base architecture model using the following steps:

1. Locating the join points - Pinpointing the location

where the base architecture model and the aspect

models (i.e., the security requirements) interact.

a. Analyze security vulnerabilities and threats to

the software based on the security requirements.

b. Specify join point conditions for the connectors

in the base architecture model. This typically

shows what security vulnerability that the

connectors in the base model are vulnerable to.

c. Check each connector in the base model to see

if it meets the join point condition.

2. Constructing advices - Defining the behavior of the

system in order to enforce security policies on the

base software architecture.

a. Identify join points that have the same

vulnerability and group them together as a

pointcut.

b. Design a mechanism or an advice for each

pointcut such that the vulnerability is mitigated.

3. Weaving aspects - Integrating the aspect models (i.e.,

security requirements) into the base software

architecture.

a. Arrange a systematic way to search for

joinpoints.

b. For each joinpont, modify the base architecture

model according to the corresponding advice.

 The authors claim that this approach offers a rigorous

way to identify notion in aspect-orientation and to reason

about the correctness of aspect weaving (not described

here). Additionally, they claim that the join point model

in their security framework has a powerful expressibility

because of the hierarchical modeling ability of the

software architecture, due to their use of SAM. Lastly, the

authors claim that their approach supports a reusable and

reliable design of secure software architectures.

 In light of their claims, this paper only present

preliminary results of applying their security framework

using a formal aspect-oriented approach to build secure

software architectures of a toy problem (a travel planner

information system). This approach lacks any tool

support and fails to address the scalability of their

approach as the proposed system and security

requirements gets larger. Lastly, the authors do not

discuss the dependency between the aspect models and

how to correctly partition of security aspects. Compared

to the previous security framework, discussed in Section

2.1, however, this approach offers a more formal and

structured process and is far more advanced and mature as

a process in incorporating an AOSD approach in the

design, development and implementation of security

requirements.

2.3 An Aspect-Oriented Security Framework
The aspect-oriented security framework proposed in [14]

is clearly not as developed as [6] in Section 2.1 and [18]

in Section 2.2 but is aimed at creating a truly generic

aspect-oriented framework that any specialized security

framework should adhere to. That is, the approach

proposed in [14] concentrates on defining the

characteristics that any good AOSD security approach

should contain and then how this might be achieved. In

this section, we describe the generalized conclusions of

this work in Section 2.3.1 and then the authors lessons

learned from the development and implementation of an

aspect-oriented security framework. This work, although

not comparable to the previous approaches in its maturity,

structure or applicability, is presented here to generalize

the needed characteristics and encountered short-comings

of an aspect-oriented security framework so that future

proposed frameworks include what has been shown to be

needed and avoid previous pitfalls.

2.3.1 An Aspect-Oriented Security Framework
 The framework described in [14] identified the

following primary characteristics needed in a security

framework:

• Proactive stance. A security framework should be

designed to be used as part of the development

process so that security can be applied to the

software system by default.

• Global application. A security framework should

treat security as a crosscutting concern but also

allow security analysts to apply security solutions

globally while still giving them the flexibility to

focus on only pieces of the system if necessary.

www.manaraa.com

 5

• Consistent implementation. A security framework

should apply implementations consistently of the

same solution. This should be achieved by

automating the process of integrating the security

solutions into the software system.

• Adaptability. A security framework should provide

a full-featured “transformation engine and

expressive but simple language for encoding generic

directives for security solutions” [14]. It should

ensure that the security framework can be used to

implement a wide range of security solutions.

• Seamless integration. Any security framework or

security framework tool should be easily integrated

into the build process of a software system.

The authors claim that these features needed in a security

framework “meld well with the strengths of the aspect-

oriented program model” [14]. Surprisingly, however, the

authors in [14] do not mention reusability of security

policies as a desirable characteristic even though the

security frameworks [6], described in Section 2.1, and

[18], described in Section 2.2, mention it as a contribution

characteristic of their aspect-oriented security framework.

 Using these characteristics, the authors implemented

a framework and tool target to address several common,

implementation security problems in C programs.

Specifically, the authors applied their security framework

to address such prevalent security exploits as [14]:

• Buffer overruns

• Time-of-check-to-time-of-use

• Format string vulnerabilities

• Protection of communication channels

• Event ordering enforcement

• Type safety

 The authors conclude, while their approach was

helpful, an approach that implemented security policies at

the design or architecture phases are more apt to consider

globally applicable security threats or vulnerabilities.

Unfortunately, few details of their approach don't allow

for an adequate understanding of how to apply their

security framework to other applications, much less to

allow the ability to independently evaluate their approach.

2.3.2 Lessons Learned from An Aspect-Oriented

Security Framework
Despite the lack of details provided for the aspect-oriented

security framework [14] described in Section 2.3.1, the

authors provide some lessons learned/obstacles

encountered in [15]. These obstacles were derived from

developing their security framework and then having

developers apply it to an application in practice. The

authors intend these lessons learned to be used by other

practitioners when developing improved aspect-oriented

security frameworks.

 From [15], the lessons learned include:

1. The KISS Principle. The adoption by software

developers and QA teams of a new software

development approach or language into industry use

typically requires an easy to understand, well-

documented technique. This is particularly true for

AOSD-based approaches since "aspects tend to

invalidate the concept of well-defined, narrow

interfaces" thus adding to the complexity of the

software [15].

2. Shifting Development Paradigms. To get software

professionals and the software industry to adopt a

new software development paradigm demands case

studies, empirical analysis and results to prove the

advantages of adopting a new way of designing and

developing software.

3. Traceability. It is necessary to have a security

framework to have a mechanism to allow for

traceability that a development team to maintain

throughout the software development lifecycle. The

framework in [15] did not have the ability for tracing

security requirements throughout the development

lifecyle, and this was the main complaint by the

developers and QA teams when applying this

security framework in practice.

4. Early lifecycle security abstractions. The

approach in [15] allowed developers to separate

security concerns from the program's main modules

during the implementation phase rather than in the

earlier development phases (requirements, design,

etc.). The developers indicated that the ability to

define code level security concerns during the design

phase is critical to properly integrating security

requirements in an AOSD-based security framework.

5. Tool support. As in any software engineering

approach, the lack of tool support hindered the

practicality, understanding, effectiveness and

accuracy of using the AOSD-based security

framework of [15] by developers in practice.

 Although the lessons learned, listed above, may seem

obvious to most software engineers, it is important to

describe them since they came from comments made by

actual software developers using the AOSD-based

security framework of [14] in practice. Further, the

lessons learned come from the mistakes made in [14] and

thus should (hopefully) not be repeated in later AOSD-

based security frameworks so that the AOSD and security

community can quickly arrive at a practical, effective

AOSD-based security framework that can be readily used

in practice.

www.manaraa.com

 6

2.4 Aspect-Oriented Security Frameworks

Discussion and Evaluation

Using the five lessons learned of [15] as an evaluation

criteria for the AOSD-based frameworks [6], described in

Section 2.1, and [18], described in Section 2.2 we see that

these security frameworks make several of the same

mistakes as [14] despite being published several years

later.

 The AOSD-based security framework in [6], we

provide the following evaluation using the lessons learned

of [15] as an evaluation metric:

• The KISS Principle. The use of UML and a UML-

like way of defining security concerns is something

that most software developers are familiar with

allowing for a quick understanding of the framework.

The description of the process, however, is not

enough that it likely could not be successfully

applied in practice.

• Shifting Development Paradigms. Again, since a

UML-like language was used, software designers

and developers may not be forced to make a large

shift in their development paradigm to be able to

incorporate security concerns as an aspect of their

design and implementation.

• Traceability. The approach provides no mention or

mechanism at how traceability could be achieved.

However, we believe that the way in which they

model a security concern (as a UML Collaboration

Diagram), it may not be difficult to manually verify

and trace a security requirement throughout the

development lifecycle.

• Early lifecycle security abstractions. The

framework is aimed at the design phase of a

security-critical software application. Thus, it

allows for early lifecycle security abstractions.

• Tool support. Does not provide any tool support

although it was mentioned as future work. Note

however, a current search could not find tool support

for this security framework.

The AOSD-based security framework in [18], we provide

the following evaluation using the lessons learned of [15]

as an evaluation metric:

• The KISS Principle. The use of the Software

Architecture Model (SAM), Petri nets and temporal

logic in the definition of the software architecture

and security concerns may be intimidating and

difficult for those in industry that currently do not

use such an approach. Yet, since [18] was looking

to develop a more formal AOSD-based security

framework, adhering to this principle may be

difficult.

• Shifting Development Paradigms. Again, to ask

industry to adopt the use of SAM, Petri nets and

temporal logic in their development process when it

is not currently used is a lot to ask without proven,

empirical results showing the advantages of this

framework.

• Traceability. Like [6], [18] provides no explicit

support for traceability of security concerns from

design to architecture to implementation. However,

unlike [6], [18]'s heavy formalisms would

complicate a manual trace of a security requirement

throughout the development lifecycle.

• Early lifecycle security abstractions. The

framework is aimed at the architecture phase of a

security-critical software application. Thus, it

allows for early lifecycle security abstractions,

however, not as early in the development lifecycle as

[6].

• Tool support. Does not provide any tool support

although it was mentioned as future work. Tool

support for this security framework is critical

because of the heavy formalisms and the notation-

intense definitions of a software architecture and

security concerns. Again note, a current search

could not find tool support for this security

framework.

 Thus, neither AOSD-based security frameworks

measure up to the standards required by [15]. Although

the security frameworks of [6] and [18] provide

innovative approaches, it is clear that they need to be

further developed and integrated into the development

lifecycle and better supported with tools and empirical

results before they are used in a software industry setting.

3. Aspects in Software Security: Other

Approaches in Using an Aspect-Oriented for

Software Security
This section investigates beyond proposed security

frameworks employing an aspect-oriented approach.

Research in adopting an aspect-oriented approach in

securing coding, AOP modeling and verification of access

control and distributed aspects remain active research

interests in regards to software application security. This

section specifically addresses the active research pursuits

in these areas of adapting an aspect-oriented approach to

developing, designing and implementing the security

requirements of a security-critical software system.

3.1 Secure Coding
New programming paradigm promoting separation of

concern is Aspect-Oriented Programming. Security

information in the coding can be separated as a concern

www.manaraa.com

 7

and can be encoded separately from the base code. The

popular Object-oriented programming supports such kind

of modularity to an extent, which doesn’t provides enough

flexibility and adaptability and just good in separating

concepts that can be mapped easily to the objects.

Modeling security in OOP’s is difficult, in the sense that

we can write a class for security which other objects can

call this security class for each checking. This incurs

complete exhaustive spreading of call code through out

the application code base.

In the above case, if one forgets a critical checking,

penetrate and patching process is really exhaustive and

very expensive. And central security class is difficult to

recover from the critical check. This leads to the

separation of the security as a concern in programming

base. Aspect-oriented programming gives more flexibility

in addressing this concern and solving it. The paper [17]

has proposed an AOP extension to the C programming

language. This extension gives greater benefit in the

secure coding. An AOP technique allows an application

developer to just focus on the application and doesn’t

need to have any knowledge about the security while

programming. Later, a security expert can model the

secure segment and can easily weave it into the

application base code.

It is also understandable that developers are not and

need not be good in writing secure code. One of the

popular examples is buffer overflow problem, which

exploits the C code. The possible solution for this kind of

known security issue is penetrate-and-patch strategy

through out the base code. The paper also addresses that

the reasons for such insecure code pattern are no

comprehensive design time methodologies, lack of

comprehensive resource tools to help write secure

programs, lack of expertise with both application and

security knowledge. Some of the more common problems

include misuse of security protocols and unrealistic view

of what a system should consider “trusted”.

Tools that try to provide security assurance,

vulnerability analysis help to prevent security

vulnerabilities, which are after-the-fact tools. They don’t

address how to design and implement the secure code.

The main principle of the paper [17] is to give a proactive

approach by the use of AOP extension to the C language.

The extension principles are minimizing the security

knowledge requirement for a developer, abstraction of

security related elements from the application, increase

the clarity of the program, language generic security

policy specification, reducing the effort of developing

secure application, effectiveness and easy way of

expressing policies, legacy source code with known

problems should be able to benefit from this effectively,

reusability of the security policies across different

applications.

The language the paper [17] proposes allows inserting

the advice code before the point of interest; replace the

point of interest, after the point of interest. The types of

locations to operate on are,

1. Calls to functions

2. Function definitions

3. Pieces of functions

One of the example for aspects that replaces the

vulnerable rand() function in C Language, is given below.

aspects secure_random{

 int secure_rand(void) {

 /**

 * Secure call to random defined here

 **/

 }

 funcCall<int rand(void)> {

 replace {

 secure_rand();

 }

 }

}

In the above example, secure_rand(void) is a function

definition for secure random number generation. The

keyword ‘funcCall’ specifies that matches call to functions.

In this case, the calls to rand() is caught and replaced by

the secure_rand() function. The extension language

weaves the aspects into the regular C program to single C

program at the compile time. This extension supports

three type of matching facilities, namely:

1. Name

2. Type

3. Argument

Name matching allows the programmer to give an

interest in functions, files, modules whose names matches

a pattern, for which they use the “?” construct to specify

the wildcards in names. To support the type specification

they used “any?” or “any*” to specify one type or all type.

In order to match the variable argument, “…” operator is

used.

This paper ignores the problem of order and

precedence concern that is the order in which the aspects

are weaved to the base code. It disallows all the conflicts.

Applying the AOP to security has various usages, namely:

1. automatic error checking on security critical calls

2. implement buffer overflow protection techniques

3. automatic logging of security relevant data

www.manaraa.com

 8

4. replacing generic socket code with SSL socket

code

5. specifying privileged sections in the program to go

through set of lock-sown procedures

They also mention aspect weaver with suite of security

aspects is language independent. They have also given the

example above a complete implementation, and how the

code looks after woven. So the paper identifies some of

the major problem in software security and proposes an

extension for C language to use AOP concept to alleviate

those security problems.

3.2 AOP Modeling and Verification of

Access Control
In the paper [16], they address the inadequate support of

access control for web applications, and propose how the

use of AOP techniques solves the problem. They give an

extension of UML based web engineering (UWE). In the

web application, implementation of complex business

processes faces the problem of access control over the

pages which the user can access. Access control is

commonly modeled as the part of web navigation in each

and every element, introducing redundancy into the

models. Access control is a cross cutting concern in web

applications, applies to several classes of web pages.

UWE separates the web application as the content, the

navigation structure, business process and presentation.

Based on navigation model of UWE, they use the UML

state machine to model access control in web applications.

In web application, if the navigation nodes need to be

given access control then the link-based access control is

given in traditional method. But the navigation node can

be accessed via external link, under which case the link

based access control fails. Therefore the access control

should be a part of the behavior of the protected nodes.

This paper extends the UWE by associating to each

navigation node one state machine which specifies the

detailed behavior of the navigation node (Figure 2). This a

naïve approach.

Figure 2. UML Metamodel: Model Element & State Machine

In this basic approach it is very difficult to associate

same statemachine for multiple model elements. Say, if we

have same security policy state machine, it introduces

redundancy for each model element. So they give an

extension of the UWE metamodel, introducing the

concept of aspects into UWE. All the classes that is to be

associated to same rules are put together in a single aspect

AccessControl. So, similar association is done to this

aspect and not to each and every classes contained in the

AccessControl aspect. The access control rules are

defined in the aspect that contains all the navigation nodes

of the same access control rules. Modeling of access

control in web application is modularized this way, and

redundant specifications can be avoided.

Figure 3. Extension of UWE Metamodel by Aspects

This can also be nested Aspects of Aspects and also

can be extended to multiple aspects in Aspects.

An example of web application is a publication library,

where each node needs to be protected by access control

rules. This can be modularized by the use of this approach,

which is shown below.

Figure 4. Library Web Application – Navigation Diagram

Figure 5. Aspect AccessControl Containing Concerned Nodes

This paper thus address the access control cross

cutting concern in a web application, which can be easily

modularized using the aspect oriented modeling approach.

Also the paper [16] similarly uses the aspect concept for

www.manaraa.com

 9

describing the access control properties of popular RBAC

model. Also it shows how the verification composition of

access control features can be supported by the use of

aspect concept. But the systematic verification model

doesn’t gives an automatic verification model. The well

known paper [5] on modeling security concern in an

aspect based approach, also addresses the above discussed

issues and describes the strategies to analyze the security

concern in various functional concern effectively using

aspect oriented approach. This approach is based on the

UML templates and UML collaborations. Weaving of the

aspects with the base model is primarily obtained by

merging model elements with the same name.

3.3 Distributed Aspects

The paper [10] discusses the distributed related concerns.

This paper proposes the notion of remote pointcuts that

can match events on remote hosts, including the support

for remote sequences. It also allows distributed advise

execution. Finally it provides the model of distributed

aspects which addresses deployment, instantiation and

data sharing issues. They have extended JAsCo to support

dynamic aspects. They have explained this concept taking

the example of data cache and replication problem. They

proposed this language as AWED which enables the

matching of the remote join points by the remote pointcuts,

and all corresponding associated aspects is executed in

remote hosts. This gives the support for multiple host

aspect execution and multiple host joint point catching.

The remote sequence concept allows one to give the order

of precedence and catch accordingly.

This paper also allows the advice to give the

declaration of the concept of Group, where multiple hosts

can be grouped together for the remote pointcut or aspects

execution. Also, it allows the synchronous and

asynchronous remote aspect execution. At the real

implementation a remote proxy aspect is generated at the

joint pointcut host and redirecting the catch to the remote

aspects. This paper addresses and shows how this

approach helps greatly improving the complete cache

replication and solving the issues effectively.

3.4 Discussion

As we have seen in all the papers above the security is a

concern which prevails in any context. When we take a

scenario in the context of application, the security concern

is present across various code segments. It is well known

crosscutting concern, which can be effectively and

efficiently handled using the AOP techniques.

 Also, consider the implementation of a complete

system in OSI architecture (Fig. 7). There will be various

layer dependent security issues which runs across layers.

Security is also a cross layer concern, using AOP we can

handle more easily

Figure 6. Security - A Crosscutting Concern

Figure 7. Cross Layer Security Concern

Similarly, security is not a localized concern. It is a

distributed concern which is present across the entire

network globally. It is very difficult and highly expensive

to implement this kind of concern in a regular

programming technique. The Aspect Oriented technique

gives a greater flexibility to address this problem and

solve this security concern across different machine. As

proposed by the paper [10], the distributed concerns can

be solved by the use of aspects effectively, the security

concern which runs over the machines can be solved very

effectively in a cost efficient way.

www.manaraa.com

 10

4. Concluding Remarks
Clearly, assuring stakeholders that a security-critical

software system correctly satisfies the security properties

placed upon it will continue to be an important task for

successful applications. The crosscutting nature of

security requirements complicates the design,

development and implementation of software systems with

many security requirements (e.g., security requirements

being tangled in requirements and design documents and

in the actual implementation, traceability of security

requirements from requirements and design into actual

implementation, etc.). Fortunately, adopting an aspect-

oriented software development (AOSD) approach in

developing, designing and implementing eases the

complexities of crosscutting requirements, such as many

security requirements. AOSD proposes solutions to better

modularize crosscutting requirements (i.e., concerns) by

removing them from the main modules and allotting them

into a separate module that then applies to certain points

of execution in the main modules. This then detangles the

crosscutting concerns and allows for a more modularized,

manageable software architecture.

 This paper described several approaches to

incorporating an aspect-oriented viewpoint when

developing, designing and implementing security

requirements in a software system. Several AOSD-like

security frameworks were reviewed as well as other

approaches using AOSD when handling security concerns.

The high number of and wide-ranging approaches indicate

that current state of research in adopting and AOSD

approach into the implementation of security requirements

is in its infancy and that no agreement within the AOSD or

security community has been reached as to which

approach is most suitable. Thus, research in this area will

likely continue until a suitable approach or approaches are

published and agreed upon by the AOSD and security

community with enough empirical results to prove that it,

indeed, provides a superior solution.

5. Acknowledgements
This survey was completed to meet the final project

requirement of COM S 610 - Seminar on Aspect-Oriented

Software Development led by Dr. Hridesh Rajan, offered

by the Department of Computer Science at Iowa State

University during the Spring 2006 semester. The authors

would like to thank Dr. Rajan for his guidance throughout

the semester as well as our classmates for providing

feedback on an earlier draft of this work.

6. References
[1] Baumeister, Z. and K. Knapp, “Aspect-Oriented Modeling

of Access Control in Web Applications”. In Workshop on

Aspect Oriented Modeling (AOM’05), 2005.

[2] R. Bodkin, "Enterprise Security Aspects", In AOSD Tech.

for Application-Level Security (AOSDSEC'04), 2004.

[3] Chargi, A., and M. Mezini, “Using Aspects for Security

Engineering of Web Service Compositions”, In Proc. IEEE

Int’l Conf. on Web Services (ICWS’05), pp. 59-66, 2005.

[4] Devanabu, P. and S. Stubblebine, "Software Engineering

for Security: A Roadmap", In Proc. Conf. Future of

Software Eng., ICSE'00, Special Volume, pp. 227-239,

2000.

[5] Georg, G., France, R. and I. Ray. “An Aspect-Based

Approach to Modeling Security Concerns”. In Proc.

Workshop Critical Systems Development with UML, pp.

107–120, 2002.

[6] Georg, G., Ray, I., and France, R., “Using Aspects to

Design a Secure System”, In Proc. 8th IEEE Int’l Conf. on

Eng. of Complex Computer Systems (ICECCS’02), pp.

117-128, 2002.

 [7] Haley, C.B., Laney, R.C. and B. Nuseibeh, "Deriving

Security Requirements from Crosscutting Threat

Descriptions", In Proc.3rd Int'l Conf. Aspect-Oriented

Software Development (AOSD'04), pp. 112-121, 2004.

[8] Kiczales, G. et. al., "Aspect-Oriented Programming", In

Proc. European Conference on Object-Oriented

Programming (ECOOP'97), 1997.

[9] Kiczales, G. et. al., "Overview of AspectJ", In Proc.

European Conference on Object-Oriented Programming

(ECOOP'01), 2001.

[10] Navarro, L., et. al., “Explicitly Distributed AOP Using

AWED”. In Proc. 5th Int’l Conf. Aspect-Oriented

Software Development (AOSD’06), pp. 51-62, 2006.

[11] Rosenhainer, L., "Identifying Crosscutting Concerns in

Requirements Specifications", In Early Aspects 2004:

Aspect-Oriented Requirements Eng. and Architecture

Design Workshop, pp. 49-58, 2004.

[12] Rashid, S., Moreira, A. and J. Araujo, "Modularisation and

Composition of Aspectual Requirements", In Proc. 2nd Int'l

Conf. Aspect-Oriented Software Development (AOSD'03),

pp. 11-20, 2003.

[13] Ray, I., France, R., Li, N. and G. Georg, "An Aspect-

Based Approach to Modeling Access Control Concerns",

Journal of Info. and Software Tech., 46(9), July 2004,

pages 575-587.

[14] Shah, V. and F. Hill, "An Aspect-Oriented Framework", In

Proc. DARPA Info. Survivability Conf. and Exposition

(DISCEX'03), pp. 22-24, 2003.

[15] Shah, V. and F. Hill, “An Aspect-Oriented Security

Framework: Lessons Learned”, In AOSD Techn. for

Application-Level Security (AOSDSEC), 2004.

[16] Song, E., Reddy, France, R., Ray, I., Georg, G. and R.

Alexander, “Verifiable Composition of Access Control and

Application Features”, In ACM Symposium on Access

Control Models and Technologies (SACMAT’05), 2005.

[17] Viega, J., Bloch, J.T., and P. Chandra, "Applying Aspect-

Oriented Programming to Security", In Cutter IT Journal,

14(2):31-31, 2001.
[18] Yu, H. et. al., “Secure Software Architectures Design by

Aspect Orientation”, In Proc. 10th Int’l Conf. on Eng. of

Complex Computer Sys (ICECCS’05), pp. 45-57, 2005.

	2006
	Architecting Secure Software Systems Using an Aspect-Oriented Approach: : A Survey of Current Research
	Josh Dehlinger
	Nalin Subramanian
	Recommended Citation

	Architecting Secure Software Systems Using an Aspect-Oriented Approach: : A Survey of Current Research
	Abstract
	Disciplines

	Microsoft Word - Dehlinger_Subramanian_CS610_Project_Paper_final.doc

